In the format provided by the authors and unedited.

Oxytocin modulates social value representations in the amygdala

Yunzhe Liu^{1,2,3}, Shiyi Li^{1,2,3,7}, Wanjun Lin^{1,2,3,7}, Wenxin Li^{4,7}, Xinyuan Yan^{1,2,3}, Xuena Wang⁴, Xinyue Pan⁴, Robb B. Rutledge^{5,6} and Yina Ma^{0,1,2,3*}

¹State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China. ²IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. ³Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China. ⁴School of Psychological and Cognitive Sciences, Peking University, Beijing, China. ⁵Wellcome Centre for Human Neuroimaging, University College London, London, UK. ⁶Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, UK. ⁷These authors contributed equally: Shiyi Li, Wanjun Lin and Wenxin Li. *e-mail: yma@bnu.edu.cn

a) fMRI during-scan behavioral data (n = 125 males, 180 trials for each participant); **b**) post-scan behavioral data (n = 125 males, 90 trials for each participant); **c**) independent online-replication data (n = 315 subjects, 82 trials for each participant); **d**) independent oxytocin behavioral replication data (n = 80 males, 82 trials for each participant). The social reference model (M4) consistently outperformed other models.

Error bars represented standard error of the mean.

In the behavioral analysis, we modeled trial-by-trial preference ratings using 8 different models. Model fits were performed on z-scored preference ratings. The first one was based on the value of monetary outcome to the self (\$Self) and to the partner (\$Other). The second and third models considered inequality aversion, in addition to the value of \$Self and \$Other, the third model made a difference between advantage and disadvantage inequality. The fourth model (i.e., M4) is the *social reference model*, considering the cosine similarity between the current offer and the most preferred one. Note that the equation of M4 was equivalent to a model of $a * \cos(\theta - \phi)$ based on trigonometry, where ϕ was the reference point, i.e., the angle between the most preferred allocation. The cos ($\theta - \phi$) was actually used in the fMRI analysis as the parametric regres sor given it is a more compact measure (we used the distance to this cosine similarity, i.e., $1 - \cos(\theta - \phi)$). The fifth and sixth models built up the inequality aversion in a compact way of summarizing the offer (similar to the social reference model), i.e., similarity between the potential offer (θ) and equal offer (45°) described as cosine ($\theta - 45^\circ$). The sixth model also considered fixed reference to the pure egocentric ($\cos(\theta - 0^\circ)$, i.e., $\cos(\theta)$) and allocentric ($\cos(90^\circ - \theta)$, i.e., $\sin(\theta)$) offer. The last two models, seventh and eighth models, considered loss aversion with the same or different free parameters for loss aversion to self and to the partner.

Given that BIC tends to overestimate model complexity in the trade-off of a growing number of free parameters and goodness-of-fit, we employed the variational free energy as the model selection criteria, which was insensitive to additional model complexity in duced by adding covariance components (Friston et al., 2007) and has shown with better model selection ability relative to AIC/BIC (Rigouxet al., 2014; Penny, 2012). Among these 8 models, the best model for the current design was the *social reference model* (i.e., M4), according to model selection using free energy.

Below listed all the 8 models for behavioral analysis (with *a*, *b*, *c*, and *d* as potential free parameters):

M1: a * \$Self + b * \$Other

M2: a * \$Self + b * \$Other + c * abs (\$Self - \$Other)M3: a * \$Self + b * \$Other + c * max (0, \$Self - \$Other) + d * max (0, \$Other - \$Self)M4: $a * \cos (\theta) + b * \sin (\theta)$ M5: $a * \cos (\theta - 45^{\circ})$ M6: $a * \cos (\theta) + b * \sin (\theta) + c * \cos (\theta - 45^{\circ})$ M7: a * max (0, \$Self) + b * max (0, \$Other) + c * min (0, \$Self) + c * min (0, \$Other)M8: a * max (0, \$Self) + b * max (0, \$Other) + c * min (0, \$Self) + d * min (0, \$Other)

Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J. & Penny, W. Variational free energy and the Laplace approximation. *Neuroimage* **34**, 220-234 (2007).

Rigoux, L., Stephan, K.E., Friston, K.J. & Daunizeau, J. Bayesian model selection for group studies—revisited. *Neuroima*ge 84, 971-985 (2014).

Penny, W.D. Comparing dynamic causal models using AIC, BIC and free energy. Neuroimage 59, 319-330 (2012).

50µl of stop solution was added to each well and mixed fully to stop the reaction. The oxytocin extraction efficiency was 90% (114 out of 127 participants), as determined by spiking with a known amount of hor mone and extracting this known amount along with the samples. Oxytocin levels in extracted saliva were then quantified using the oxytocin EIA, in which the salivary oxytocin hormone competed with exogenously added alkaline phosphatase -linked oxytocin, for binding sites on the oxytocin antibody. The optical density (OD) was measured on a Sunrise plate reader (Tecan, Research Triangle Park, NC) at 405 nm after 30 min. The hormone content (in pg/ml) was determined by plotting the OD of each sample against a standard curve.

(φ). There was no effect of Scanning-order (**a**), or effect of partner type (e.g., prosocial-prosocial; prosocial-individualist; individualistprosocial; individualist-individualist), i.e., no main effect of Order or interaction effect between Order and Social Disposition on the prosociality index(**b**).

Error bars represented standard error of the mean (n.s, not significant).

Supplementary Figure 7

Amygdala responses predicted inequality aversion in prosocials

a) Coronal view of bilateral anatomically defined amygdala ROI (red). Pearson correlation analyses showed that amygdala activity was positively correlated with inequality aversion across all participants (n = 116 males, **b**) but was only significant in prosocials (n = 30 males under placebo, **c**, and n = 30 males under oxytocin, **d**) and not in individualists (n = 30 males under placebo, **c**, and n = 30 males under oxytocin, **d**) and not in individualists (n = 30 males under placebo, **c**, and n = 30 males under oxytocin, **f**).

Amygdala responses to different parametric regressors (divided into bins), including the deviations from the individual-specific reference point (a-d); the deviations from allocentric reference point (e-h); and the absolute value difference (i-l) in prosocials under placebo (the first column, i.e., a/e/i, n = 30 males) or oxytocin (the second column, i.e., b/f/j, n = 30 males), and in individualists under placebo (the third column, i.e., c/g/k, n = 30 males) or oxytocin (the fourth column, i.e., d/h/l, n = 26 males). The amygdala activity increased as a function of deviations from individual-specific referent point in prosocials under placebo (slope estimate of the linear fit=0.222, p=0.001, a) and this pattern was diminished under oxytocin (slope estimate=0.010, p=0.88, b). In contrast, oxytocin increased amygdala responses to deviations from individual-specific referent-point in individualists (slope estimate=0.232, p=0.003, c), and this pattern was not found under placebo (slope estimate=0.042, p=0.50, d). Monotonically increasing patterns were not present for amygdala responses for absolute value differences or for deviations from allocentric reference (all p > 0.5, e-l).

Error bars represented standard error of the mean.

Functional connectivity between the amygdala and vmPFC was stronger in individualists (n = 56 males) than in prosocials (n = 60 males) (voxel-wise p<0.001, uncorrected). Oxytocin increased the amygdala-vmPFC coupling individualists but not prosocials. Further ROI analysis (functionally defined vmPFC cluster showing different coupling with amygdala between individualists and prosocial under placebo, height threshold p<0.001, suggested that oxytocin increased the strength of functional connectivity between amygdala and vmPFC in encoding social value distance in individualists (one-sample t-test, $t_{54} = 2.69$, p = 0.009) but not in prosocials ($t_{58} = 0.067$, p = 0.95).

Error bars represented standard error of the mean (**p < 0.01; n.s, not significant).

Brain Regions	L/R	BA	<i>T</i> values	MNI Coordinates (x, y, z)		
Prosocials (n = 30 males)						
Striatum	R	-	4.93	28	-4	-6
Amygdala/Hippocampus	R	-	5.22	20	-10	-12
Middle Temporal Gyrus	L	21	5.13	-52	-36	-2
Superior Parietal Lobule	R	7	5.55	16	-68	50
	L	7	4.79	-18	-66	44

Supplementary Table 1. Brain regions involved in encoding social value distance in prosocials under placebo

Only clusters, significant at a height threshold of p < 0.001 and an extent threshold of p < 0.05 with family-wise error corrections for multiple comparisons, were reported with local maxima in Montreal Neurological Institute (MNI) space. "-", no proper data. L, left hemisphere; R, right hemisphere.

Supplementary Table 2. Brain regions involved in encoding social value distance with parametric modulator centered on egocentric reference (i.e., x-axis) or allocentric reference (i.e., y- axis).

Brain Regions	L/R	BA	F values	MNI Coordinates (x, y, z)					
Egocentric reference (i.e., x-axis)									
Main Effects of Social Disposition o	None								
Social Disposition x Treatment Interaction									
Thalamus	R	-	11.21	6	-18	6			
	L	-	11.54	-4	-15	5			
Lingual	R	-	14.23	4	-72	0			
Allocentric reference (i.e., y-axis)									
Main Effects of Social Disposition o	None								
Social Disposition x Treatment Interaction					None				

Only clusters, significant at a height threshold of p < 0.001 and an extent threshold of p < 0.05 with family-wise error corrections for multiple comparisons, are reported with local maxima in Montreal Neurological Institute (MNI) space. "-", no proper data. L, left hemisphere; R, right hemisphere.

Supplementary Table 3a. Scores on emotion-related questionnaire measures
and Mood changes from pre- to post-experiment (mean ± standard deviation) in
the fMRI oxytocin experiment (<i>n</i> = 125).

	Individualists		Prosocials		Main effects F _(p)		Interaction	
_	Placebo	Oxytocin	Placebo	Oxytocin	Social Disposition	Treatment	F _(p)	
Wellbeing	42.81 (8.91)	43.45 (10.43)	46.49 (9.85)	46.82 (9.69)	$3.98\scriptscriptstyle{(0.05)}$	0.08 (0.78)	0.01 (0.93)	
Happiness	18.20 (3.87)	18.90 (4.51)	19.68 (3.74)	$19.09_{(4.40)}$	1.26 (0.26)	$0.00 \scriptstyle (0.94)$	0.75 (0.39)	
BDI	6.87 (6.04)	8.14 (9.03)	5.16 (4.62)	6.41 (5.68)	2.13 (0.15)	1.15 (0.29)	0.00 (0.99)	
TA	37.90 (6.92)	41.24 (10.96)	36.71 (7.38)	36.94 (8.06)	3.30 (0.07)	$1.40_{(0.24)}$	1.06 (0.31)	
Mood measurement								
Pre	15.07 (5.79)	14.29 (11.58)	17.42 (7.75)	15.94 (8.19)	1.67 (0.20)	$0.53 \scriptstyle (0.47)$	0.05 (0.82)	
Post	15.41 (7.38)	15.00 (11.62)	16.30 (9.89)	$16.71 \scriptstyle{(10.54)}$	0.51 (0.48)	0.00 (1.00)	0.05 (0.82)	
Δ Mood	0.34 (6.52)	0.71 (14.24)	-1.13 (8.12)	0.77 (6.19)	0.18 (0.67)	$0.47\scriptscriptstyle{(0.50)}$	0.21 (0.65)	

Supplementary Table 3b. Scores on emotion-related questionnaire measures and Mood changes from pre- to post-experiment (mean \pm standard deviation) in the behavioral oxytocin-replication experiment (n = 80).

	Individualists		Prosocials		Main effects F _(p)		Interaction			
	Placebo	Oxytocin	Placebo	Oxytocin	Social Disposition	Treatment	F _(p)			
Wellbeing	44.08 (12.15)		48.06 (10.52)		2.45 (0.12)	-	-			
Happiness	21.55 (6.12)		21.68 (6.23)		0.01 (0.93)	-	-			
BDI	7.85 (8.69)		7.23 (7.05)		0.13 (0.73)	-	-			
TA	37.89 (9.52)		36.92 (11.06)		0.16 (0.69)	-	_			
Mood measurement										
Pre	14.79 (9.26)	13.37 (10.61)	18.11 (9.98)	$19.39_{\scriptscriptstyle (9.41)}$	4.62 (0.03)	0.01 (0.94)	2.75 (0.10)			
Post	$14.88\scriptscriptstyle{(11.12)}$	13.62 (10.79)	$16.94\scriptscriptstyle{(11.98)}$	$16.42 \scriptstyle{(12.02)}$	0.91 (0.34)	0.87 (0.35)	0.15 (0.70)			
Δ Mood	0.09 (7.00)	0.25 (8.26)	-1.17 (6.49)	-2.97 (7.16)	2.59 (0.11)	$0.69_{(0.41)}$	0.98 (0.33)			

Wellbeing: Participant's wellbeing measured by the Index of Well-Being questionnaire (Campbell et al., 1976) (n = 122 in **a**, n = 80 in **b**); Happiness: Participant's happiness was measured by the Satisfaction With Life Scale (Pavot et al., 1991) (n = 125 in **a**, n = 69 in **b**); BDI: Participant's depression symptoms were measured by in Beck Depression Inventory (Beck et al., 1988) (n = 123 in **a**, n = 80 in **b**); TA: Participant's trait anxiety measured by the Trait Anxiety (Spielberger & Sydeman, 1994) (n = 123 in **a**, n = 80 in **b**).

Mood measurement: Pre/Post, Participant's pre-/post-experiment mood measured by Positive and Negative Affect Schedule (Watson et al., 1988) (n = 122 in **a**, n = 72in **b**). Δ Mood = Post-mood *minus* Pre-mood. Some participants did not complete all the questionnaires, thus the number of participants (n) provided differed in each questionnaires.

ANOVAs with Treatment (between-subjects factor in **a**; within-subjects factor in **b**) and Social Disposition (between-subjects factor) was conducted. "-": no test of treatment for the scores of these questionnaires because the within-subject design was employed in the oxytocin-replication study and each participant completed these questionnaires just once. Neither the main effect of Treatment nor the interaction effect was significant for any emotion-related questionnaire scores across two studies. Manipulation check of mood changes after oxytocin/placebo has shown that the main effect of Treatment and Social Disposition and interaction effect were not significant in fMRI experiment (**a**) and oxytocin-replication experiment (**b**).

Reference:

Campbell, A., Converse, P. E., & Rodgers, W. L. *The quality of American life: Perceptions, evaluations, and satisfaction (*Russell Sage Foundation,1976).

Pavot, W. G., Diener, E., Colvin, C. R., & Sandvik, E. Further validation of the Satisfaction with Life Scale: Evidence for the cross-method convergence of well-being measures. *J. Pers. Assess.* **57**, 149-161 (1991).

Beck, A. T., Steer, R. A., & Carbin, M. G. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. *Clin. Psychol. Rev.* **8**, 77-100 (1988).

Spielberger, C. D., & Sydeman, S. J. State-Trait Anxiety Inventory and State-Trait Anger Expression Inventory. (Lawrence Erlbaum Associates, 1994).

Watson, D., Clark, L. A., & Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. *J. Pers. Soc. Psychol.* **54**, 1063 (1988).

Supplementary Note 1

Evidence for using intranasal administration of 24 IU oxytocin.

<u>The effect of intranasal oxytocin on alterations in brain oxytocin levels.</u> We administered oxytocin using intranasal delivery. Although limited amounts of oxytocin cross the blood-brain barrier¹, the direct anatomical connection between the nasal cavity and the brain makes it possible to deliver oxytocin to the brain. The intranasal delivery of oxytocin reaches the central nervous system and increases central oxytocin concentrations via channels surrounding trigeminal and olfactory nerve fibers. The quantifiable evidence that intranasal oxytocin alters brain oxytocin activity is provided from findings of cerebrospinal fluid (CSF) oxytocin increases after intranasal oxytocin in rodents², monkeys³⁻⁷ and humans^{8,9}, also well documented in a systematic recent review¹⁰.

Some of the clearest evidence in rat and primate was reported in recent studies^{7, 11}. Lee and colleagues⁷ measured CSF concentrations of oxytocin after intranasal administration of labeled (d5-deuterated) oxytocin and provided direct evidence for CSF penetrance of intranasal oxytocin administered to nonhuman primates. Another recent study by Tanaka and colleagues¹¹ systematically examined the pharmacokinetic properties and brain distribution of oxytocin after intranasal application. This study evaluated the disposition, nasal absorption and bioavailability of oxytocin was approximately 2%, and more than 95% of oxytocin in the brain was directly transported from the nasal cavity.

Moreover, Paloyelis and colleagues⁸ measured the availability of intranasal oxytocin to brain tissues in human participants using arterial spin labeling (ASL) to quantify in vivo intranasal oxytocin-induced changes in resting regional cerebral blood flow (rCBF), which reflects changes in neuronal activity rather than simple vascular effects. They showed robust evidence that intranasal oxytocin induced changes in an oxytocinergic network of regions expected to express oxytocin receptors, including limbic and midbrain/brainstem regions, such as the amygdala, hippocampus, caudate nucleus, ventral striatum and pallidum; anterior and middle cingulate, inferior frontal gyrus, anterior insula, and superior temporal gyrus, and these changes were sustained over the entire observation interval of 78 min.

<u>The dosage issue of intranasal oxytocin.</u> The use of 24 IU administration of oxytocin in the current study (the most commonly used dose in the literature) is supported by recent findings:

First, using oxytocin-induced CSF change as an indicator, a recent study by Rault¹² measured cerebrospinal fluid samples before and after intranasal administration of 50 µg oxytocin in pigs (close to human equivalent dose of 24 IU, considering body surface area, pharmacokinetics, and physiological time differences among species,

the pig-to-human dose extrapolations factor of 0.95 is close to $1^{13,14}$) and showed that 50 ng (approximately 0.001 of the administered 50 µg) reached the CSF. Although a small proportion accesses the brain, the common dose of 24 IU providing 50 ng reaching the CSF impacts neural activity and is already a supra-physiological dose given the commonly reported baseline endogenous CSF OT concentrations in humans^{9, 15}.

Second, it is also worth noting that a common finding in recent oxytocin studies is that intranasal oxytocin does not produce a linear dose–response curve¹⁶⁻¹⁸. Although the exact mechanism is unknown, it has been speculated that the nonlinearity of the oxytocin dose response is due to coupling with different G proteins or binding to the Avpr1a receptor when high doses flood available oxytocin receptors. Guoynes and colleagues¹⁷ examined the effect of intranasal oxytocin on the central receptor binding and immunoreactive protein for oxytocin and detected significant changes in the prairie voles receiving a dose similar to the equivalent in human studies but not for lower or higher doses. Moreover, Keech and Hocking¹⁹ suggested that the effect of intranasal oxytocin on social cognition is not modulated by dosage.

Finally, regarding the oxytocin effect on amygdala activity, Spengler and colleagues²⁰ directly compared effects of different doses of oxytocin on human emotional processing and found evidence that 24 IU oxytocin (compared with 12 or 48 IU) produced the most pronounced effects on amygdala responses underlying emotional processing, as well as on plasma and salivary oxytocin levels, providing evidence for 24 IU as the appropriate dose to target amygdala functioning.

Supplementary References

1. Leng, G. & Ludwig, M. Intranasal oxytocin: myths and delusions. *Biol. Psychiatry.* **79**, 243-250 (2016).

2. Neumann, I.D., Maloumby, R., Beiderbeck, D.I., Lukas, M. & Landgraf, R. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. *Psychoneuroendocrinology* **38**, 1985-1993 (2013).

3. Chang, S.W., Barter, J.W., Ebitz, R.B., Watson, K.K. & Platt, M.L. Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta). *Proc. Natl. Acad. Sci. USA* **109**, 959-964 (2012).

4. Dal Monte, O., Noble, P.L., Turchi, J., Cummins, A. & Averbeck, B.B. CSF and Blood Oxytocin Concentration Changes following Intranasal Delivery in Macaque. *PLoS ONE* **9**, e103677 (2014).

5. Freeman, S.M., *et al.* Plasma and CSF oxytocin levels after intranasal and intravenous oxytocin in awake macaques. *Psychoneuroendocrinology* **66**, 185-194 (2016).

6. Modi, M.E., Connor-Stroud, F., Landgraf, R., Young, L.J. & Parr, L.A. Aerosolized oxytocin increases cerebrospinal fluid oxytocin in rhesus macaques. *Psychoneuroendocrinology* **45**, 49-57 (2014).

7. Lee, M.R., *et al.* Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: determination using a novel oxytocin assay. *Mol. Psychiatry.* **23**, 115 (2017).

8. Paloyelis, Y., *et al.* A Spatiotemporal Profile of In Vivo Cerebral Blood Flow Changes Following Intranasal Oxytocin in Humans. *Biol. Psychiatry.* **79**, 693-705 (2016).

9. Striepens, N., *et al.* Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. *Sci. Rep.* **3**, 3440 (2013).

10. Quintana, D.S., Smerud, K.T., Andreassen, O.A. & Djupesland, P.G. Evidence for intranasal oxytocin delivery to the brain: recent advances and future perspectives. *Ther. Deliv.* **9**, 515-525 (2018).

11. Tanaka, A., *et al.* Delivery of oxytocin to the brain for the treatment of autism spectrum disorder by nasal application. *Mol. Pharmaceut.* **15**, 1105-1111 (2018).

12. Rault, J.-L. Effects of positive and negative human contacts and intranasal oxytocin on cerebrospinal fluid oxytocin. *Psychoneuroendocrinology* **69**, 60-66 (2016).

13. Center for Drug Evaluation and Research. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. *US. Dep. Heal. Hum. Serv.* **July**, 1–27 (2005)

14. Nair, A.B. & Jacob, S. A simple practice guide for dose conversion between animals and human. *J. Basic. Clin. Pharm.* **7**, 27 (2016).

15. Kagerbauer, S.M., *et al.* Plasma oxytocin and vasopressin do not predict neuropeptide concentrations in human cerebrospinal fluid. *J. Neuroendocrinol.* **25**, 668-673 (2013).

16. Quintana, D.S., *et al.* Dose-dependent social-cognitive effects of intranasal oxytocin delivered with novel Breath Powered device in adults with autism spectrum disorder: a randomized placebo-controlled double-blind crossover trial. *Transl. Psychiatry.* **7**, e1136 (2017).

17.Guoynes, C.D., *et al.* Chronic Intranasal Oxytocin has Dose-dependent Effects on Central Oxytocin and Vasopressin Systems in Prairie Voles (Microtus ochrogaster). *Neuroscience* **369**, 292-302 (2018).

18.Bales, K.L., *et al.* Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. *Biol. Psychiatry.* **74**, 180-188 (2013).

19.Keech, B., Crowe, S. & Hocking, D.R. Intranasal oxytocin, social cognition and neurodevelopmental disorders: A meta-analysis. *Psychoneuroendocrinology* **87**, 9-19 (2018).

20.Spengler, F.B., *et al.* Kinetics and Dose Dependency of Intranasal Oxytocin Effects on Amygdala Reactivity. *Biol. Psychiatry.* **82**, 885-894 (2017).