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1. Method S1. Time-varying Granger causality with signal-dependent noise

Assuming a constant effective connectivity between brain regions, the classic uses the time-series models

(both GC and GCSDN) with constant model coefficients. However, this assumption may be an oversimpli-

fication of the information processing in the brain, especially during some intensive cognitive computation

(e.g., the two-party bargaining game). To model the dynamic behavior, a more complicated model which can

better describe the dynamic characteristics is needed. Here, we first briefly discussed the consquence when

classic time-invariant model was applied to a time-varying system, and then proposed a new approach of

time-varying Granger causality with signal-dependent noise (time-varying GCSDN) to measure the dynamic

causality.

Consider the following time series model

xt = axt−1 + b(t)yt−1 + εt,

where εt is a Gaussian white noise, a is a constant coefficient, and b(t) is a time-varying coefficient. The

classic Granger causality can be defined as

Fy→x = log
var (b(t)yt−1 + εt)

var (εt)
,

and estimated by

F̂y→x = log

∑T−1
s=1 b̂2(s)y2s +

∑T−1
s=1 ε̂2s∑T−1

s=1 ε̂2s
,

where b̂(t) is the local classic estimation at each time step t and ε̂s is the residual process. If we ignore the

time-varying property of the model and do the conventional least square estimation for the parameters, we

can have an estimation of b̄ and the corresponding model residual ε̄s, and the causality can be established as

Fy→x = log

∑T−1
s=1 b̄2y2s +

∑T−1
s=1 ε̄2s∑T−1

s=1 ε̄2s
.

For the AR model, we showed that the causality established by assuming the constant coefficient in the

model is upper bounded by the mean causality among time windows, and the condition on which the equality

holds was discussed as follows. Define

ot =

xt

yt

′

,β =

ā

b̄

 ,βt =

 â

b̂(t)

 ,

O =


x1 y1

x2 y2
...

...

xT−1 xT−1

 ,D =


x2

x3

...

xT

 .
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For the whole time series we have

O′D = O′Oβ,

and for each time step t, the following equation holds,

o′
txt+1 = o′

totβ.

Since
∑T−1

t=1 o′
txt+1 = O′D, we get

T−1∑
t=1

o′
totβt = O′Oβ.

Therefore, β is a weighted average of βt as

β = (O′O)−1
T−1∑
t=1

o′
totβt.

Since what we consider here is the effect of the time-varying parameter b(t), we further suppose that the

constant parameter a = 0, and the above formula can be simplified as

b̄ = (

T−1∑
s=1

y2s)
−1

T−1∑
t=1

y2t b̂(t).

Since
T−1∑
s=1

b̄2y2s =

(
T−1∑
s=1

y2s

)−2(T−1∑
t=1

y2t b̂(t)

)2(T−1∑
s=1

y2s

)

=

(
T−1∑
s=1

y2s

)−1(T−1∑
t=1

y2t b̂(t)

)2

≤

(
T−1∑
s=1

y2s

)−1(T−1∑
t=1

b̂2(t)y2t

)(
T−1∑
t=1

y2t

)

=

T−1∑
t=1

b̂2(t)y2t ,

we have that

Fy→x ≤ F̂y→x,

and the equality holds only when
∑T−1

t=1 b̂2(t)y2t = c
∑T−1

t=1 y2t with a constant c. Assuming that the local

estimation gives the exact value of the parameter, we can see that the causality established by ignoring the

time-varying property of the parameters is upper bounded by the averaged causality among local causalities

(i.e. the causality detected by each sliding window). Therefore, caution must be made when we detect the

causality for a whole time series, since the causality may exist in some time windows. Therefore, if the whole

time series can be divided into N time windows according to the task paradigm of the fMRI experiment, we

want to estimate the effective connectivity at each time window instead of the whole time series.
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In our case, to deal with the signal-dependent noise (SDN) observed in the BOLD signal[1], the proposed

time-varying method is based on the Granger causality with signal-dependent noise (GCSDN) model, which

has been proved to be useful in detecting the effective connectivity previously ([2] and [3]). Suppose we

have two time series, xt and yt. Let p and q be the model orders, {Ai(i = 1, · · · , p),Bxy,j ,Byx,j(j =

1, · · · , q),Cxy,Cyx} be the model coefficient matrices, and uxy,t,vyx,t be the Gaussian white noise. The

model can be defined as follows:xt

yt

 =

p∑
i=1

Axx,i Axy,i

Ayx,i Ayy,i

xt−i

yt−i

+

rxy,t

ryx,t

, (S1)

where

rxy,t = H
1/2
xy,tuxy,t,Hxy,t = C

′

xyCxy +

q∑
j=1

B
′

xy,j

xt−j

yt−j

(x′
t−j y′

t−j

)
Bxy,j ,

Hyx,t = C
′

yxCyx +

q∑
j=1

B
′

yx,j

xt−j

yt−j

(x′
t−j y′

t−j

)
Byx,j , ryx,t = H

1/2
yx,tvyx,t.

(S2)

For the time-varying causality, we first divide the whole time series into N time windows. At each window,

the model (Eq. S1-S2) can be fit based on the direct observations and the indirect observations. Assuming

the system evolved smoothly from one time window to another, the observed time series in the current

window are considered as the direct observations of the model for this window, while the observed time-series

data in the other windows are the indirection observations. We need the indirect observations here, since

the number of data points in a given window is often too small to make reliable estimation of the model.

This is especially true for the self-paced task-fMRI experiments. In a self-paced paradigm, the number of

scans collected in one round can be as small as one or two. Here, we propose to make use of the indirect

observations by calculating the likelihood function at the ith0 time window as a weighted average among all

time windows. The weight for the observations in the ith window is defined as follows:

wi,i0 =
K
(
i−i0
h

)∑N
j=1 K

(
j−i0
h

) . (S3)

In the current paper, we used the Gaussian kernel, among many other choices [4]. A larger h is recommended,

if the time window given by the task paradigm is short, and a smaller h is preferred, otherwise. Here, we set

h = 0.17 for the numerical simulation and h = 4 for the fMRI data analysis. Define

θi0 =
{
Ai0

k , k = 1, · · · , p,Bi0
xy,j ,B

i0
yx,j , j = 1, · · · , q,Ci0

xy,C
i0
yx

}
, (S4)

the objective function (i.e.,the log-likelihood function) can be rewritten for the time window as follows

LLFi0(θ) =

T∑
t=p∨q

N∑
i=1

χith window (t)wi,i0 lθ(t), (S5)
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where

lθ(t) = −1

2
ln |Ht| −

1

2
r′tH

−1
t rt, t = p ∨ q, · · · , T. (S6)

Consider the stationary conditions of the model (Eq. S1)[1], the model parameters at the ith0 window can be

estimated by solving the following constrained optimization problem.

θ̂
i0

= argmax
θ

LLFi0(θ), s.t. stability conditions hold. (S7)

Taking the causality y → x at the ith0 time window as example, we consider the following two models for xt,

xt =

p∑
k=1

Ai0
x,kxt−i +

(
Hi0

xx,t

)1/2
uxx,t,

Hi0
xx,t = Ci0

xx

′
Ci0

xx +

q∑
j=1

Bi0
xx,j

′
xt−jx

′
t−jB

i0
xx,j ,

(S8)

and

xt =

p∑
k=1

Ai0
xy,kxt−k +

p∑
k=1

Ai0
yx,kyt−k +

(
Hi0

xy,t

)1/2
uxy,t,

Hi0
xy,t = Ci0

xy

′
Ci0

xy +

q∑
j=1

Bi0
xy,j

′

xt−j

yt−j

(x′
t−j y′

t−j

)
Bi0

xy,j .

(S9)

At each time window, the model coefficients are assumed to be constants. Define

θi0
restricted =

{
Ai0

x,k, k = 1, · · · , p,Bi0
xx,j , j = 1, · · · , q,Ci0

xx

}
,

θi0
full =

{
Ai0

xy,k,A
i0
yx,k, k = 1, · · · , p,Bi0

xy,j , j = 1, · · · , q,Ci0
xy

}
,

We can obtained the estimated θ̂
i0

restricted and θ̂
i0

full by solving the constrained optimization problem defined

in (S7). Now, the causal influence from y to x can be measured by the likelihood ratio given by the above

two prediction models for xt,

IFi0
y→x =

L
(
θ̂
i0

restricted | {xt}Tt=1

)
L
(
θ̂
i0

full | {xt}Tt=1 , {yt}
T
t=1

) ,
where the L

(
θ̂
i0

restricted | {xt}Tt=1

)
is the likelihood function for the restricted model (Eq. S8), and the

L
(
θ̂
i0

full | {xt}Tt=1 , {yt}
T
t=1

)
is the likelihood function for the full model (Eq. S9). Therefore, the likelihood

ratio test can be used for causal inference,

lry→x = −2
[
logL

(
θ̂restricted | {xt}Tt=1

)
− logL

(
θ̂full | {xt}Tt=1 , {yt}

T
t=1

)]
. (S10)

The test statistic lry→x is approximately chi-squared distributed with the degrees of freedom dffull−dfrestricted ,

where dffull and dfrestricted are the numbers of free parameters of the full model (Eq. S9) and the re-

stricted model (Eq. S8), respectively. Given the TR was 2 s, we used p = q = 1 in this analysis
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following the literature [2], [5], and [6]. A Matlab toolbox of this algorithm is also available at https:

//github.com/qluo2018/GCSDN.
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2. Method S2. Numerical Simulations of time-varying systems

To illustrate the performance of the time-varying GCSDN model, we conducted two simulation studies.

Suppose we had two brain regions, X and Y. The effective connectivity between them could be described by

the time series model, either with the assumption of the constant noise level or the signal-dependent noise

level. The observed time-series data of the activities for these two regions could be simulated by the models,

and the information flow (IF) could be detected by the classic GC, GCSDN or time-varying GCSDN model.

2.1. Time series with a Gaussian white noise

The time-series data with 1000 time steps were generated by the following model, where xt, yt were the

time series of one-dimensional, representing the activities of brain region X and Y, respectively. uxy,t, vxy,t
were the Gaussian white noise with variance 0.5,

xt

yt

 =

A11(t) A12(t)

A21(t) A22(t)

xt−1

yt−1

+

uxy,t

uyx,t

 . (S1)

The time-varying causality was modeled by the corresponding coefficients

A11(t) = 0.1, A12(t) = 0.4

(
t− t1

1000− t1

)
,

A21(t) = 0.4

(
1− t

t2

)
, A12(t) = 0.1

√
2.

Setting t1 = 500 in the model (Eq. S1), we had a strong effective connectivity from Y to X through the

coefficient A12 at the beginning, and this excitatory influence weakened to be undetectable as the posi-

tive coefficient A12 decreased linearly to zero. As the coefficient A12 became negative, an inhibitory effect

strengthened as the absolute value of the coefficient A12 increased. Similarly, the effective connectivity from

X to Y evolved in an opposite pattern from inhibitory to excitatory by setting t2 = 500.
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2.2. Time-varying model with a signal-dependent noise

The time-series data with 1000 time steps were generated by the following model for two time series,

representing the activities of brain region X and Y, respectively.xt

yt

 =

0.1 0

0 0.1
√
2

xt−1

yt−1

+

rxy,t

ryx,t

 ,

rxy,t

ryx,t

 =

H
1
2
xy,t 0

0 H
1
2
yx,t

uxy,t

uyx,t

 ,

Hxy,t = 1 +
(
Bxx(t) Bxy(t)

)xt−1

yt−1

(x′
t−1 y′t−1

)Bxx(t)

Bxy(t)

 ,

Hyx,t = 1 +
(
Byx(t) Byy(t)

)xt−1

yt−1

(x′
t−1 y′t−1

)Byx(t)

Byy(t)

 .

(S2)

The time-varying causality was modeled by the corresponding coefficients

Bxx(t) =
√
0.5, Bxy,t(t) =


√
0.6
(
1− t

t1

)
t ≤ t1

0 t > t1
,

Byx,t(t) =

 0 t < t2
√
0.6
(

t−t2
1000−t2

)
t ≥ t2

, Byy(t) =
√
0.5.

A significant non-zero value of the coefficient Bxy lead to an effective connectivity from Y to X, while the

coefficient Byx indicated an effective connectivity from X to Y . Setting t1 = 600 and t2 = 400 in model

(Eq. S2), the strong influence from Y to X at the beginning of the simulation weakened linearly to zero at

600s. At 400s, an influence from X to Y began to increase linearly till the end of the simulation. With the

proposed time-varying algorithm, we expected to detect an effective connectivity from Y to X, but not from

X to Y at the beginning, while a strong effective connectivity from X to Y , but not from Y to X at the end

of the simulation.

2.3. Simulation results for the time-varying Granger causality with Gaussian white noise

Assuming the effective connectivity between two brain regions X and Y by the simulation model (Eq.

S1; Fig. S1A), we employed the classic GC model to infer the information flow between X and Y by using

the whole time series data. In 1000 repeats, only 0.5% and 0.8% significant information flow was detected for

X → Y and Y → X, respectively (Fig. S1B). We also applied the GCSDN model to detect the information

flow on the whole time series data, and found few significant information flow on both direction, only 13.2%

significant information flow was detected for X → Y and 16.1% for Y → X (Fig. S1B). When we divided
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the simulated time series data into five time windows, both methods identified significant information flows

as specified by the simulation model (Eq. S1). At the first and the last two time windows, both the classic

GC model and the GCSDN model could detect more than 94% of the significant information flows in the

1000 repeated simulations. In the 3rd time window, where no significant interaction was specified by the

model (Eq. S1), the false positive detection was less than 1% (Fig. S1B). Applying the proposed the time-

varying GCSDN method to these five time windows, similar performance was achieved (Fig. S1D). With the

time-varying GCSDN method, we found strong information flow between X and Y in both directions at the

beginning, and this information flow weakened as the causal coefficients in the model (Eq. S1) decreased. At

the 3rd time window, these two time series stopped to exchange any information. As the absolute value of

the causal coefficients in the model (Eq. S1) increased from the third time window, stronger information flow

was detected again (Fig. S1D). We also estimated the coefficients of the AR-BEKK model for each window,

and found that the estimated coefficients were equal to the average of the time-varying parameters at each

window (Fig. S1C). These results suggested that the time invariant models were no longer applicable when

time-varying property was significant.

2.4. Simulation results for the time-varying Granger causality with signal-dependent noise

We repeated the simulation of the model (Eq. S2) for 1000 times (Fig. S2A), and found that the classic

GC method failed to detect any significant information flow in the presence of the signal-dependent noise,

no matter we used the whole time series data or divided it into five time windows (Fig. S2B). Applying the

GCSDN method to the whole time series, we detected the significant information flows between X and Y

in both directions (Fig. S2B). In five time windows, the time-varying GCSDN method accurately identified

the significant information flows from Y to X at the first two windows and from X to Y at the last two

windows, but no significant information flow at the 3rd time window (Fig. S2D). Compared with the GCSDN

method, the proposed time-varying GCSDN revealed more details of the time-varying system, and estimated

the time-varying coefficient accurately at each time window (Fig. S2C), which may be particularly useful

when we want to investigate the evolving pattern of interaction between the key brain regions the underlying

time-varying behavior.
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3. Method S3. Expectation-Maximum algorithm to identify the behavioral window

To learn the parameters for the HMM, we applied the Expectation-Maximum algorithm. With the same

notations used as described in the main text, the iterative estimation of parameters is as follows:

E-steps: for all time-state pairs (t, k),

1) Recursively compute the forward probabilities

αt,k(i) = P (O1:t,k, qt = qi|λt) ,

and the backward probabilities

βt,k(i) = P (OT :−1:t+1,k|qt = qi,λt) .

2) Compute the probabilities of the state occupation

P (qt = qi,O1:T,k|λt) = αt,k(i)βt,k(i),

P (qt = qi, qt+1 = qj ,O1:T,k|λt) = αt,k(i)βt,k(i)a
t
ijP (Ot+1,k|qt+1 = qj ,λt) .

M-steps:

Based on the estimated probabilities of the state occupation, we can re-estimate

the HMM parameters

aij,t+1 =

∑N
k=1

∑T−1
t=1 P (qt = qi, qt+1 = qj ,O1:T,k|λt)∑N

k=1

∑T−1
t=1 P (qt = qi,O1:T,k|λt)

,

πi,t+1 =

∑N
k=1 P (q1 = qi,O1:T,k|λt)∑N

k=1 P (O1:T,k|λt)
,

µi,t+1 =

∑N
k=1

∑T
t=1 P (qt = qi,O1:T,k|λt) · ot,k∑N

k=1

∑T
t=1 P (qt = qi,O1:T,k|λt)

,

Σi,t+1 =

∑N
k=1

∑T
t=1 P (qt = qi,O1:T,k|λt) · (ot,k − µt+1

i )(ot,k − µt+1
i )′∑N

k=1

∑T
t=1 P (qt = qi,O1:T,k|λt)

.

where N is the number of subjects and T is the length of the time-series observation. Here, we had 76

subjects with 59 observations for each.

We calculated the information revelation (IR) and R2 at the identified behavioral windows and plotted

the clustering results in the two-dimensional feature space (the x-axis represents information revelation (IR)

and the y-axis represents R2). However, the R2 calculated at the incremental window [25, 35] of subject

29 was too small, making the incremental window class and the conservative window class overlapped (Fig.

S4D). Therefore, we did not consider this behavioral window as an incremental window in the main analysis,

and the main findings remained to be the same when retaining this behavioral window (Fig. S4A, B, C).
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4. Method S4. Estimate the hemodynamic response function with the GLM model

As the BOLD signal could be driven by both the task design and the information exchange between

regions, it was necessary to regress out the activation of the whole brain from the BOLD signal before

calculating the effective connectivity. Therefore, we estimated the hemodynamic response function of the

brain regions of interest by the means of the GLM model[7]. Given the matrix formed by the stacking of k

basis elements B = [b1, · · · , bk] (here we used the 3-HRF basis, i.e., hrf (with time and dispersion derivatives)

in the SPM8), we first convolved the basis elements with the event-train of each condition (i.e., trail onset,

thinking, choice making), then down-sampled the signal to the same sampling rate as the BOLD signal. Next,

the designed matrix XB was formed by the above regressors and a matrix of nuisance parameters, such as

the trends and the motion parameters (i.e., three translations and three rotations). The estimated vector

was then given by β̂B = X†
By. We used the estimated vector β̂B to calculate the hrf for each condition. To

ensure that the residuals were white noise, the BOLD signal and the design matrix were pre-whitened before

the estimation[8].
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5. Method S5. Accounting for the possible confounding effect of the hemodynamic response

function on the findings

Instead of the classic Granger causality, the model applied to the BOLD signal was the Granger causality

with signal-dependent noise (GCSDN) in our case. Therefore, it was necessary to examine whether the

information flow detected by the GCSDN model could still reflect the correct underlying effective connectivity

with the possible confounding effect of the hemodynamic response function. We examined the effect of the

hemodynamic response function in the following aspects.

5.1. Compare the HRF delay between two brain regions

The delay between the hemodynamic response and the neuronal activity was estimated by the time

required for the HRF to reach its peak value from the onset. Comparing such delays among three ROIs with

the pairwise t-test, we found no significant difference in the condition of thinking (Fig. S10A-C). Therefore,

the regional variation of HRF would not be a significant problem in the current study.

5.2. Numerical simulations of the HRF delay

Since the sensitivity of the analyses for effective connectivity depends on the neuronal transmission delay

between the source and the effect regions and their relative HRF delay (i.e., the time required for the HRF

to reach its peak value from the onset.)[9], we assessed the performance of the tvGCSDN model at different

levels of HRF delay and neuronal transmission delay.

Consider two brain regions X and Y, the HRF delay of X was longer than that of Y and the relative HRF

delay varied in 0-1s. The underlying effective connectivity between them could be described by the time

series model. Suppose X was the source region and Y was the effect region, the model was defined as follows,

 xt = Axxxt−l +H
1
2
xy,tuxy,t

yt = Ayxxt−l +Ayyyt−l +H
1
2
yx,tuyx,t,

Hxy,t = 0.1 + 0.01x2
t−l,

Hyx,t = 0.1 + (Byxxt−l + 0.01yt−l)
2,

(S1)

where l represented the neuronal transmission delay. Single-cell recordings in monkeys had shown that the

median latencies increased by approximately 20 ms from one brain region in the visual hierarchy to the next

[10]. Considering that the size of the human brain increased compared with that of the monkeys, the neuronal

delay could be longer. Therefore, the neuronal delay l was set to vary from 40ms to 140ms. Following the

settings of simulation in the literature[9], the autocorrelation parameter Axx and Ayy was set to 0.9, and
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the influence from X to Y was set to 0.5 for Axy in the autoregressive model and
√
0.005 for Byx in the

signal-dependent noise respectively.

We first generated two time series xt and yt by the Granger causality model with signal-dependent

noise (Eq. S1), both signals were simulated for 300,000 time steps of 1 ms (300 s). Next, the signal was

convolved with the hemodynamic response functions of the corresponding region, which was generated by the

SPM8. Gaussian white noise was then added to the signal, representing the physiological noise in the BOLD

response. Subsequently, the signal was down-sampled to the same rate as the BOLD signal (i.e., 2 HZ), and

the Gaussian noise was again added to represent the acquisition noise. The signals were normalized to zero

mean and unit-variance after each step above and the total amount of added noise was 20%.

We repeated the above experiment 100 times. The GCSDN model was applied to calculate the informa-

tion flow (IF) of the simulated time series in both directions. We detected the dominant direction of the

information flow by the difference in the information flow rdiff = − 1
2

(
IFX→Y − IFY→X

)
, where IFX→Y

and IFY→X were two chi-squared distribution statistics with the same degrees of freedom. Therefore, the

distribution function of rdiff is

Tm(x) =
1

2m
√
πΓ(m+ 1

2 )
xmKm(x),

where Km(x) is a modified Bessel function, Γ(·) is a Gamma function, and m = dxdy − 1
2 [11]. A table

for the two-sided one and five percent quantiles of this distribution can be found in [11]. In the current

paper, we took dx = dy = 1. Therefore, 4.61 represents a significant level of 0.01, if rdiff < −4.61,

we detected a effective connectivity from X to Y , if rdiff > 4.61, we detected a effective connectivity

from Y to X. Otherwise, no significant effective connectivity could be detected. We counted the times of

rdiff < −4.61,
(
IFY→X < IFX→Y

)
and rdiff > 4.61,

(
IFX→Y < IFY→X

)
, then calculated the proportion of

inverted, correct and non-significant results.

It could be found that when the underlying effective connectivity was from X to Y, where the source

region had longer HRF delay than the target region, though the number of detected non-significant results

increased, there were few inverted results(Fig. S11A). The proportion of inverted results decreased when

neuronal delay increased. Assuming no difference in HRF delay, the proportion of detected inverted results

was less than 1% in all conditions of neuronal delays. Together with the findings of no significant regional

variation in the HRF delays of 3 ROIs (Method S4), we believe that the dynamic information flow estimated

by the tvGCSDN was a reliable measurement of the strength of the effective connectivity.

We also simulated the time series with Y-to-X underlying effective connectivity 100 times, the effect region

had a longer HRF delay than the source region in this case. GCSDN was applied to the time series to detect

the information flow, but no inverted result was found (Fig. S11B).
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Table S1: Characteristics of the behavioral windows defined by the hidden Markov model.

Incr. is short for incremental window, Cons. for conservative window and Strat. for strategic window. The characteristics were

reported by mean ± standard deviation.

Incr. Cons. Strat p-value

Length 27.14± 18.36 20.5± 18.27 29.89± 19.75 0.1453

Starting time 15.05± 16.14 18.18± 16.96 22.64± 16.68 0.107

The values of the virtual items 5.54± 0.71 5.76± 1.05 5.64± 0.78 0.45
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Table S2: The correlation between demographics of the buyers and the number of different types of behavioral windows. SES -

social economic status; IQ - intelligence quotient. Each measurement was reported by Pearson correlation coefficient/p-value.

Correlation / p-value Incr. Cons. Strat.

Sex -0.39/0.0004 -0.073/0.53 0.19/0.094

Age 0.36/0.0015 -0.21/0.074 -0.27/0.019

SES -0.15/0.21 0.23/0.051 0.03/0.80

Earning -0.26/0.023 0.16/0.16 0.06/0.60

IQ -0.48/0.0089 0.22/0.25 0.26/0.18
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Table S3: The identification of strategies when different intervals were chosen to calculate the observations.

The information revelation(IR) was reported by mean ± standard deviation.

information revelation (IR)
length of interval DBI

Incr. Cons. Strat.

5 0.5131 0.49±0.19 0.07±0.15 -0.61±0.22

7 0.5824 0.48±0.19 0.13±0.11 -0.59±0.26

9 0.7748 0.48±0.2 0.13±0.16 -0.62±0.23

7(focus on past) 0.7986 0.5±0.2 0.17±0.16 -0.58±0.28
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Figure S1: Detection of information flow in a system with time-varying coefficient and Gaussian white noise.

(A) The example of the simulated time series data by model (Eq. S1). (B) Results of the information flow inferred by both

the classic GC and the GCSDN methods on the simulation data. These models were applied to both the whole time series

and the 5 time windows, the rates of the significant detections in the 1000 repeats of the simulation were reported. (C) The

time-varying parameter estimated by Time-varying GCSDN at each time window. Red points and error bars represent the

mean and standard deviation, respectively. (D) The information flow between X and Y that measured by the likelihood ratio

of Time-varying GCSDN method at each time window, error bars represent the standard deviation.
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Figure S2: Detection of information flow in a system with time-varying coefficient and signal-dependent noise.

(A) The example of the simulated time series data by model (Eq. S2). (B) Results of the information flow inferred by both

the classic GC and the GCSDN methods on the simulation data. These models were applied to both the whole time series

and the 5 time windows, the rates of the significant detections in the 1000 repeats of the simulation were reported. (C) The

time-varying parameter estimated by Time-varying GCSDN at each time window. Red points and error bars represent the

mean and standard deviation, respectively. (D) The information flow between X and Y that measured by the likelihood ratio

of Time-varying GCSDN method at each time window, error bars represent the standard deviation.
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Figure S3: Comparison of behavioral classification between time-invariant and time-varying approaches.

(A) Classification of behavioral windows by the time-invariant approach in Bhatt et al. 2010. (B) Classification of behavioral

windows by the time-varying approach in the current study. (C) Comparison of the grouping of the behavioral windows among

three groups defined by Bhatt et al . 2010 and the current study.
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Figure S4: Main findings remained when the ambiguous behavior window of Subject 29 was retained.

Comparison of the mean information flow among three types of behavioral windows: (A) from rDLPFC to rTPJ; (B) from rTPJ

to rDLPFC ((A) *p = 0.0369, **p = 0.0027. (B) ***p = 0.0006, ***p = 0.0003.).

(C) The mean and std of the information revelation (IR) and R2 calculated at the identified behavioral windows, error bars

represent the standard deviation. (D) The clustering result of behavioral windows in the two-dimensional feature space, where

the x-axis represents information revelation (IR) and the y-axis represents R2.
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Figure S5: Comparison of the information flow estimated by the classic GC and GCSDN method.

In this time-invariant grouping of subjects by Bhatt et al. 2010, no significant group-difference could be detected from causal

connectivity among three behavior groups neither by the classic GC(A-F) method nor by GCSDN method(G-L).
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Figure S6: Behavioral correlations between the information revelation (IR) and the information flows
(
IF

)
in 6 directions for 3

different types of behavioral windows.
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Figure S7: Behavioral correlations between the R2 and the information flow
(
IF

)
in 6 directions for 3 different types of behavioral

windows.
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Figure S8: Results when different intervals were chosen to calculate the observations.

F statistics of the mean causal effect among 3 behavioral groups, Pearson correlation coefficient between the mean causal effect

and the behavior character on behavioral windows, when different intervals were chosen to calculate the observations.

*p < 0.05; **p < 0.01; ***p < 0.001.
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Figure S9: Results of different thresholds of the minimum length of a stable behavioral window.

F statistics of the mean causal effect among 3 behavioral groups, Pearson correlation coefficient between the mean causal

effect and the behavior character on behavioral windows, when setting different thresholds of the minimum length of behavioral

windows in six directions.

*p < 0.05; **p < 0.01; ***p < 0.001.
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Figure S10: Comparison of the HRFs among three ROIs.

(A) Mean HRFs for three ROIs in the conditon of thinking. (B) Compare HRF delay (i.e., from onset to peak value of HRF)

among two brain regions in the condition of thinking by pairwise t-test. (C) Group difference of the hemodynamic delay (i.e.,

from onset to peak value of HRF) among three groups.
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Figure S11: Model performance. Proportion of detected X-to-Y information flow (green), Y-to-X information flow (red) and

non-significant results (blue) with different hrf delay and neuronal delay. (A) X-to-Y underlying effective connectivity (B) Y-to-X

underlying effective connectivity.
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